close message

GET PATIENTS STARTED AT NO CHARGE

Some exclusions apply.

DIAGNOSING LEMS

Early recognition of LEMS symptoms can lead to a quicker diagnosis and initiation of effective treatment11

The progressive nature of LEMS combined with the diagnostic challenges it presents make early symptom recognition essential for optimal patient care.

Anatomical display of neuromuscular and autonomic symptoms of LEMS Anatomical display of neuromuscular and autonomic symptoms of LEMS

Diagnostic methods

If you suspect that your adult patient may have LEMS, there are several clinical diagnostic methods that you can utilize to get them on the right treatment path.11

SIGNS AND SYMPTOMS

Magnifying Icon

A diagnosis of LEMS is often suspected based on clinical symptomatology, including proximal muscle weakness, autonomic dysfunction, and areflexia. However, confirmatory tests are critical for a definitive diagnosis11

ANTIBODY AND ELECTRODIAGNOSTIC TESTING MAY CONFIRM A LEMS DIAGNOSIS

Shield Icon

Anti-VGCC antibody testing
Up to 90% of patients with LEMS will have elevated levels of P/Q-type voltage-gated calcium channel (VGCC) antibodies11,16,17

  • A negative test result does not rule out a diagnosis of LEMS. Electrodiagnostic testing should be performed as a follow-up
Electro Waves Icon

Electrodiagnostic testing
Increment on high-frequency repetitive nerve stimulation or post-exercise potentiation can also confirm diagnosis11

Free LEMS diagnostic test available

Did you know that Catalyst offers a no-cost test that can identify the presence of VGCC antibodies in suspected LEMS patients?

Learn More

Uncovering hidden cancer: Another benefit of early recognition and diagnosis

The sooner LEMS is identified as the disorder behind your patients’ symptoms, the sooner treatment can begin. But that treatment will be predicated by the type of LEMS that’s causing the symptoms. In more than half of cases, LEMS is related to the presence of cancer—typically small cell lung cancer (SCLC).12,13

Tumor and non-tumor LEMS

IV Bag Icon

50-60% PARANEOPLASTIC LEMS

  • Most commonly associated with SCLC12,13
  • Predominantly affects males 60 or older, many with a history of smoking18
  • LEMS symptoms typically precede tumor detection; up to 96% of SCLC cases can be diagnosed within a year of LEMS diagnosis12
  • More rapid, progressive course compared to non-tumor LEMS14
Shield Icon

40-50% NON-TUMOR LEMS

  • Increased prevalence among patients with preexisting autoimmune disorders11,18
  • Typical age of onset is 35-40; gender-neutral18
  • Slower progression/fluctuating symptoms11,14
  • Associated with HLA-B8, HLA-DR3, and HLA-DQ218
Videos Icon

Watch Expert Videos

Learn more about LEMS diagnosis and treatment by visiting our LEMS Video Library.
Phone Icon

Request a Rep

Request to be contacted by a FIRDAPSE Representative.

Indication and Important Safety Information

indications and usage:

FIRDAPSE is a potassium channel blocker indicated for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) in adults.

CONTRAINDICATIONS

FIRDAPSE is contraindicated in patients with:

  • A history of seizures
  • Hypersensitivity to amifampridine phosphate or another aminopyridine

WARNINGS AND PRECAUTIONS

Seizures: FIRDAPSE can cause seizures. Consider discontinuation or dose-reduction of FIRDAPSE in patients who have a seizure while on treatment. FIRDAPSE is contraindicated in patients with a history of seizures.

Hypersensitivity: If a hypersensitivity reaction such as anaphylaxis occurs, FIRDAPSE should be discontinued and appropriate therapy initiated.

ADVERSE REACTIONS

The most common (> 10%) adverse reactions are: paresthesia, upper respiratory tract infection, abdominal pain, nausea, diarrhea, headache, elevated liver enzymes, back pain, hypertension, and muscle spasms.

To report SUSPECTED ADVERSE REACTIONS, contact Catalyst Pharmaceuticals at 1-844-347-3277 (1-844-FIRDAPSE) or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

References:
  1. Yoon CH, Owusu-Guha J, Smith A, Buschur P. Amifampridine for the management of Lambert-Eaton myasthenic syndrome: a new take on an old drug. Ann Pharmacother. 2020;54(1):56-63.
  2. Full Prescribing Information for FIRDAPSE (amifampridine). Catalyst Pharma; 2018.
  3. Orange Book: Approved drug products with therapeutic equivalence evaluations. US Food and Drug Administration website. https://www.accessdata.fda.gov/scripts/cder/ob/search_product.cfm. Accessed June 10, 2020.
  4. Lennon VA, Kryzer TJ, Griesmann GE, et al. Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med. 1995;332(22):1467-1474.
  5. Skeie GO, Apostolski S, Evoli A, et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010;17(7):893-902.
  6. Data on file, Catalyst Pharmaceuticals.
  7. Muppidi S, Wolfe GI, Barohn RJ. Diseases of the neuromuscular junction. In: Swaiman K, Ashwal S, Ferriero D, Schor N, eds. Pediatric Neurology: Principles and Practice. 5th ed. Philadelphia, PA: Elsevier; 2011:1549-1569.
  8. Sanders DB. Lambert-Eaton myasthenic syndrome: diagnosis and treatment. Ann NY Acad Sci. 2003;998:500-508.
  9. Harms L, Sieb JP, Williams AE, et al. Long-term disease history, clinical symptoms, health status, and healthcare utilization in patients suffering from Lambert Eaton myasthenic syndrome: results of a patient interview survey in Germany. J Med Econ. 2012;15(3):521-530.
  10. Merino-Ramírez MÁ, Bolton CF. Review of the diagnostic challenges of Lambert-Eaton syndrome revealed through three case reports. Can J Neurol Sci. 2016;43(5):635-647.
  11. Titulaer MJ, Lang B, Verschuuren JJ. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol. 2011;10(12):1098-1107.
  12. Titulaer MJ, Wirtz PW, Willems LNA, et al. Screening for small-cell lung cancer: a follow-up study of patients with Lambert-Eaton myasthenic syndrome. J Clin Oncol. 2008;26(26):4276-4281.
  13. Wirtz PW, Smallegange TM, Wintzen AR, Verschuuren JJ. Differences in clinical features between the Lambert-Eaton myasthenic syndrome with and without cancer: an analysis of 227 published cases. Clin Neurol Neurosurg. 2002;104(4):359-363.
  14. Wirtz PW, Wintzen AR, Verschuuren JJ. Lambert-Eaton myasthenic syndrome has a more progressive course in patients with lung cancer. Muscle Nerve. 2005;32(2):226-229.
  15. Maddison P, Lang B, Mill K, Newsom-Davis J. Long term outcome in Lambert-Eaton myasthenic syndrome without lung cancer. J Neurol Neurosurg Psychiatry. 2001;70(2):212-217.
  16. Zalewski NL, Lennon VA, Lachance DH, et al. P/Q- and N-type calcium-channel antibodies: oncological, neurological, and serological accompaniments. Muscle Nerve. 2016;54(2):220-227.
  17. Lennon VA. Serologic profile of myasthenia gravis and distinction from the Lambert-Eaton myasthenic syndrome. Neurology. 1997;48(suppl 5):S23-S27.
  18. Gilhus NE. Lambert-Eaton myasthenic syndrome; pathogenesis, diagnosis, and therapy. Autoimmune Dis. 2011;2011:973808.
  19. Quartel A, Turbeville S, Lounsbury D. Current therapy for Lambert-Eaton myasthenic syndrome: development of 3,4-diaminopyridine phosphate salt as first-line symptomatic treatment. Curr Med Res Opin. 2010;26(6):1363-1375.
  20. Bain PG, Motomura M, Newsom-Davis J, et al. Effects of intravenous immunoglobulin on muscle weakness and calcium-channel autoantibodies in the Lambert-Eaton myasthenic syndrome. Neurology. 1996;47(3):678-683.
  21. Ivanovski T, Miralles F. Lambert-Eaton myasthenic syndrome: early diagnosis is key. Degener Neurol Neuromuscul Dis. 2019;9:27-37.
  22. Wirtz PW, Verschuuren JJ, van Dijk JG, et al. Efficacy of 3,4-diaminopyridine and pyridostigmine in the treatment of Lambert-Eaton myasthenic syndrome: a randomized, double-blind, placebo-controlled, crossover study. Clin Pharmacol Ther. 2009;86(1):44-48.
  23. Oh SJ, Sieb JP. Update on amifampridine as a drug of choice in Lambert-Eaton myasthenic syndrome. US J Neurol. 2014;10(2):83-89.
  24. Strupp M, Teufel J, Zwergal A, et al. Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract. 2017;7(1):65-76.
  25. Lindquist S, Stangel M. Update on treatment options for Lambert-Eaton myasthenic syndrome: focus on use of amifampridine. Neuropsychiatr Dis Treat. 2011;7:341-349.
  26. Shieh P, Sharma K, Korhman B, Oh SJ. Amifampridine phosphate (FIRDAPSE) is effective in a confirmatory phase 3 clinical trial in LEMS. J Clin Neuromuscul Dis. 2019;20(3):111-119.
  27. Jacob S, Muppidi S, Guidon A, et al; International MG/COVID-19 Working Group. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:116803.

Indication and Important Safety Information

indications and usage:

FIRDAPSE is a potassium channel blocker indicated for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) in adults.

CONTRAINDICATIONS

FIRDAPSE is contraindicated in patients with:

  • A history of seizures
  • Hypersensitivity to amifampridine phosphate or another aminopyridine

WARNINGS AND PRECAUTIONS

Seizures: FIRDAPSE can cause seizures. Consider discontinuation or dose-reduction of FIRDAPSE in patients who have a seizure while on treatment. FIRDAPSE is contraindicated in patients with a history of seizures.

Hypersensitivity: If a hypersensitivity reaction such as anaphylaxis occurs, FIRDAPSE should be discontinued and appropriate therapy initiated.

ADVERSE REACTIONS

The most common (> 10%) adverse reactions are: paresthesia, upper respiratory tract infection, abdominal pain, nausea, diarrhea, headache, elevated liver enzymes, back pain, hypertension, and muscle spasms.

To report SUSPECTED ADVERSE REACTIONS, contact Catalyst Pharmaceuticals at 1-844-347-3277 (1-844-FIRDAPSE) or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

References:
  1. Yoon CH, Owusu-Guha J, Smith A, Buschur P. Amifampridine for the management of Lambert-Eaton myasthenic syndrome: a new take on an old drug. Ann Pharmacother. 2020;54(1):56-63.
  2. Full Prescribing Information for FIRDAPSE (amifampridine). Catalyst Pharma; 2018.
  3. Orange Book: Approved drug products with therapeutic equivalence evaluations. US Food and Drug Administration website. https://www.accessdata.fda.gov/scripts/cder/ob/search_product.cfm. Accessed June 10, 2020.
  4. Lennon VA, Kryzer TJ, Griesmann GE, et al. Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med. 1995;332(22):1467-1474.
  5. Skeie GO, Apostolski S, Evoli A, et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010;17(7):893-902.
  6. Data on file, Catalyst Pharmaceuticals.
  7. Muppidi S, Wolfe GI, Barohn RJ. Diseases of the neuromuscular junction. In: Swaiman K, Ashwal S, Ferriero D, Schor N, eds. Pediatric Neurology: Principles and Practice. 5th ed. Philadelphia, PA: Elsevier; 2011:1549-1569.
  8. Sanders DB. Lambert-Eaton myasthenic syndrome: diagnosis and treatment. Ann NY Acad Sci. 2003;998:500-508.
  9. Harms L, Sieb JP, Williams AE, et al. Long-term disease history, clinical symptoms, health status, and healthcare utilization in patients suffering from Lambert Eaton myasthenic syndrome: results of a patient interview survey in Germany. J Med Econ. 2012;15(3):521-530.
  10. Merino-Ramírez MÁ, Bolton CF. Review of the diagnostic challenges of Lambert-Eaton syndrome revealed through three case reports. Can J Neurol Sci. 2016;43(5):635-647.
  11. Titulaer MJ, Lang B, Verschuuren JJ. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol. 2011;10(12):1098-1107.
  12. Titulaer MJ, Wirtz PW, Willems LNA, et al. Screening for small-cell lung cancer: a follow-up study of patients with Lambert-Eaton myasthenic syndrome. J Clin Oncol. 2008;26(26):4276-4281.
  13. Wirtz PW, Smallegange TM, Wintzen AR, Verschuuren JJ. Differences in clinical features between the Lambert-Eaton myasthenic syndrome with and without cancer: an analysis of 227 published cases. Clin Neurol Neurosurg. 2002;104(4):359-363.
  14. Wirtz PW, Wintzen AR, Verschuuren JJ. Lambert-Eaton myasthenic syndrome has a more progressive course in patients with lung cancer. Muscle Nerve. 2005;32(2):226-229.
  15. Maddison P, Lang B, Mill K, Newsom-Davis J. Long term outcome in Lambert-Eaton myasthenic syndrome without lung cancer. J Neurol Neurosurg Psychiatry. 2001;70(2):212-217.
  16. Zalewski NL, Lennon VA, Lachance DH, et al. P/Q- and N-type calcium-channel antibodies: oncological, neurological, and serological accompaniments. Muscle Nerve. 2016;54(2):220-227.
  17. Lennon VA. Serologic profile of myasthenia gravis and distinction from the Lambert-Eaton myasthenic syndrome. Neurology. 1997;48(suppl 5):S23-S27.
  18. Gilhus NE. Lambert-Eaton myasthenic syndrome; pathogenesis, diagnosis, and therapy. Autoimmune Dis. 2011;2011:973808.
  19. Quartel A, Turbeville S, Lounsbury D. Current therapy for Lambert-Eaton myasthenic syndrome: development of 3,4-diaminopyridine phosphate salt as first-line symptomatic treatment. Curr Med Res Opin. 2010;26(6):1363-1375.
  20. Bain PG, Motomura M, Newsom-Davis J, et al. Effects of intravenous immunoglobulin on muscle weakness and calcium-channel autoantibodies in the Lambert-Eaton myasthenic syndrome. Neurology. 1996;47(3):678-683.
  21. Ivanovski T, Miralles F. Lambert-Eaton myasthenic syndrome: early diagnosis is key. Degener Neurol Neuromuscul Dis. 2019;9:27-37.
  22. Wirtz PW, Verschuuren JJ, van Dijk JG, et al. Efficacy of 3,4-diaminopyridine and pyridostigmine in the treatment of Lambert-Eaton myasthenic syndrome: a randomized, double-blind, placebo-controlled, crossover study. Clin Pharmacol Ther. 2009;86(1):44-48.
  23. Oh SJ, Sieb JP. Update on amifampridine as a drug of choice in Lambert-Eaton myasthenic syndrome. US J Neurol. 2014;10(2):83-89.
  24. Strupp M, Teufel J, Zwergal A, et al. Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract. 2017;7(1):65-76.
  25. Lindquist S, Stangel M. Update on treatment options for Lambert-Eaton myasthenic syndrome: focus on use of amifampridine. Neuropsychiatr Dis Treat. 2011;7:341-349.
  26. Shieh P, Sharma K, Korhman B, Oh SJ. Amifampridine phosphate (FIRDAPSE) is effective in a confirmatory phase 3 clinical trial in LEMS. J Clin Neuromuscul Dis. 2019;20(3):111-119.
  27. Jacob S, Muppidi S, Guidon A, et al; International MG/COVID-19 Working Group. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:116803.